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Abstract

North American beaver (Castor canadensis) populations are rebounding following
regional extirpation throughout North America, leading to increased concern
about the impacts beaver may have on communities as their populations increase.
As central place foragers, beaver restructure riparian forest communities through
the selective cutting of preferred woody species and size classes. Being able
to predict which stems are likely to be harvested and which areas have a high
abundance of desirable forage would allow land managers and ecologists to
identify likely areas for beaver recolonization, enabling proactive management to
encourage or deter population reestablishment as appropriate.
To this end, we fit three models – a logistic regression, random forest classifier,
and a stochastic gradient boosting machine as implemented in LightGBM – to
try and predict which stems would be harvested by beaver using data collected
from riparian zones within New York State’s Adirondack Park. Using tree
species, stem size class, waterbody type (stream or lake), and distance from
waterbodies as predictors, we found that all three methods produce highly
accurate predictions, with logistic regression producing the classifier with the
highest AUC and overall accuracy. These models can be used to inform forest
management practices as beaver populations, and the impacts associated with
them, continue to proliferate throughout northeastern North America.

1. Introduction

The North American beaver (Castor canadensis) is an ecosystem engineer,
inducing landscape-level changes in hydrology and forest structure through a
combination of damming and foraging behaviors. By selectively harvesting stems,
beaver are capable of fundamentally altering forest size structure and species
composition. While this selection process has long been thought to primarily
reflect preferences for individual species (Raffel et al. 2009), recent work has
suggested that beaver select stems principally based upon stem size and distance
from a waterbody, which in turn are highly predictive of stem species within
a given ecosystem (Mahoney and Stella 2020). No matter the mechanism of
selection, beaver are known to preferentially colonize areas with more desirable
food stock, and are more likely to abandon areas once the supply of desirable
woody forage has been exhausted. As a result, being able to predict which stems
are more likely to be harvested by beaver may allow us to predict which areas are
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more desirable for beaver recolonization, enabling land managers and ecologists
to proactively manage landscapes to promote or deter beaver activity.

To this end, we set out to produce models to predict which stems would
be harvested by beaver. Using a dataset collected from 19 waterbodies within
New York State’s Adirondack State Park (Mahoney and Stella 2020), we used
logistic regression, random forest, and stochastic gradient boosting machine
(GBM) models to attempt to classify stems as either harvested by beaver or
non-harvested. Accurate classifiers would be useful in order to predict areas
which are likely to host future beaver populations as the species continues to
recover from regional extirpation, and would be highly useful for landscape
management in the years to come.

2. Methods

2.1. Field Data
Data was collected between May and August 2018 as part of a study of

beaver foraging habits within New York’s Adirondack State Park (Mahoney and
Stella 2020). The data is structured as a data frame with 1543 observations of 5
variables.

The following variables were recorded:

• Distance of the plot centroid from the riparian area.
• USDA Forest Service common name for each tree. If the tree or stump

could not be identified down to species level, phylum was recorded instead.
• Tree diameter at breast height in centimeters.
• Whether the tree was located within the riparian area of a lake or a stream.
• Whether or not the tree was harvested. 0 live stems and 0 harvested

stems were recorded. Due to the relatively similar number of live and
harvested stems, this dataset was considered to have balanced classes and
no resampling or weighting of classes was performed.

For more information, see Mahoney and Stella (2020).

2.2. Models
All models were fit to a random 80% subsample of the original data set, with

the remaining 20% reserved as a hold-out set.
Three classification models were evaluated. The first of these was a simple

logistic regression model which incorporated all predictors without interaction
effects to predict probability of harvest.

The second model evaluated was a random forest, fit using the ranger R
package (Wright and Ziegler 2017). Model tuning was done using a random grid
search, evaluating 1,000 randomly selected combinations of hyperparameters.
The set of hyperparameters which maximized AUC were selected, with the final
model being fit using 12,500 trees, 2 variables per split (“mtry”), and minimum
of 15 observations per leaf node, with trees fit to data sampled with replacement
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Table 1: Selected loss functions for logistic, random forest, and stochastic gradient boosting
machine models predicting probability of a stem being harvested by beaver.

Logistic Regression Random Forest LightGBM
Accuracy 0.819 0.786 0.803
Sensitivity 0.827 0.788 0.779
Specificity 0.802 0.782 0.851
AUC 0.905 0.820 0.898

from the training data set, with each resample 74% the size of the original
training data.

The third and final model evaluated was a stochastic gradient boosting
machine, fit using the lightgbm package (Ke et al. 2021). Model tuning was
done using iterative grid searches, evaluating progressively narrower ranges of
multiple hyperparameters with each iteration. The set of hyperparameters which
maximized AUC were selected, with the final model being fit using 3,000 trees
allowed to grow to arbitrary depths, with a learning rate of 0.1 and a minimum
of 13 observations per leaf node. Each tree was fit to a bootstrap sample that
was 90% the size of the original training data, with a new sample taken every 5
trees, and each tree was fit using a randomly selected 30% of all features.

All models were fit using methods to predict class probabilities, in order to
produce ROC curves and AUC estimates. Classifications were then made using
the thresholds which optimized both sensitivity and specificity, as identified using
the training data. Models were assessed using their overall accuracy, sensitivity,
specificity, and AUC, calculated against the 20% holdout set. ROC curves
and AUC were calculated using the pROC package (Robin et al. 2011). Data
wrangling used the dplyr, tidyr, and recipes packages (Wickham et al. 2021;
Wickham 2021; Kuhn and Wickham 2021). Manuscript preparation used the
ggplot2 and kableExtra packages (Wickham 2016; Zhu 2021). All analyses used
the R statistical modeling software (R Core Team 2021).

3. Results

Model accuracies are reported in Table 1. Logistic regression produced
the model with the highest AUC, overall accuracy, and sensitivity, while the
stochastic GBM fit through LightGBM provided the highest specificity. The
random forest model performed the worst on all accuracy measured. ROC curves
for each model are presented in Figure 1.

4. Discussion

Given the relatively small data models were built with, it’s unsurprising that
the simple baseline model of logistic regression out-performed more complex
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Figure 1: ROC curves for three models of probability of stem harvest by beaver.

alternatives such as random forests and LightGBM. It is likely that with more
predictors or more noisy data the machine learning methods would become more
competitive; however, for this application, the best approach would likely be to
not use machine learning at all.

We could potentially see better results by ensembling these models together,
basing weights either upon a validation set or from a cross validation procedure.
Given that there are 51 observations (approximately 16.5% of the test set) where
the models produce different predictions, this additional step might result in
significant improvements in predictive accuracy overall.

These models demonstrate the ability to predict the probability of beaver
harvest for riparian trees based on stem size class, species, and distance from
beaver-inhabited waterbodies. This information can be used to inform forest
management practices such as the management of riparian buffers and wildlife
habitat enhancement as beaver populations, and the impacts associated with
them, continue to proliferate throughout northeastern North America.
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